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The differential equation describing the one-point joint probability density function
for the wind velocity given by Lundgren (1967) in neutral turbulent flows is extended
by a term which also takes into consideration the pressure–mean strain interaction.
For the new equation a solution is given describing the one-point probability density
function for the wind velocity fluctuations if the profile of the mean wind velocity is
logarithmic. The properties of this solution are discussed to identify the differences
to a Gaussian having the same first and second moments.

1. Introduction
Studying turbulent dispersion with Lagrangian stochastic (LS) models requires

more knowledge about the statistical properties of the underlying flow than only
mean wind velocity components and variances. A turbulent flow is ‘statistically
known’ on the lowest level from the viewpoint of using LS-models if the one-point
probability density function is given (Thomson 1987).

Usually the probability density function is approximated by a probability density
function maximizing the entropy under the condition that the moments to same
order are given (Jaynes 1975). In this way the problem of determining the probability
density function is reduced to the problem of estimating moments (e.g. Du, Wilson &
Lee 1994).

The restriction to second moments yields the Gaussian probability density func-
tion as a maximum entropy approximation. For the atmospheric surface layer this
approximation is widely used because the second moments are known for many cases
from measurements (as discussed e.g. in Fiedler 1975) and also from calculations
using equations for the second moments based on second-order closures (Mellor &
Yamada 1982).

Deviations from a Gaussian probability density function characterized by third
moments have been found in the full convective boundary layer (Willis & Deardorff,
1974). It was demonstrated (e.g. by Baerentsen & Berkowicz 1984) that these third
moments are essential for the dispersion characteristics of the full convective boundary
layer. It was also shown that for near-neutral atmospheric surface layers the fourth
moments can play an important role in the dispersion problem (Heinz & Schaller
1996).

An alternative approach is to evaluate the probability density function directly
by solving a partial differential equation for it. The governing equation for the
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one-point probability density distribution f(1) (where 1 ≡ (vk, xk, t)) of a turbulent,
non-divergent, neutrally stratified flow was derived by Lundgren (1967):
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is responsible for the change of the probability density function f (1) caused by
pressure fluctuations (r = x(2) − x and 2 ≡ (v(2)
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describes the change caused by friction forces. The function f′ (1, 2) in these equations
is defined as f′ (1, 2) = f (1, 2) − f (1) f (2). Both terms (equations (1.2) and (1.3))
are dependent on the two-point probability density function f (1, 2). For them it was
shown by Lundgren (1967) that an equation similar to (1.1) can be found, depending
on the three-point probability density function and so on.

Restricting ourselves to the one-point probability density function f (1), approx-
imations of the terms (1.2) and (1.3) are necessary. It was proposed by Lundgren
(1969) that the term (1.3) is well approximated by the expression
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Taking into consideration that terms of the kind
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are caused by forces bk (vi, xi) acting on a fluid particle moving with the velocity vi
at the point xi, approximation (1.4) results from the assumption that the turbulent
friction force acting on a fluid lump moving with the velocity vi is proportional to the
velocity difference vk − Vk to the environment moving with the mean wind velocity.
This friction force is the turbulent analogy to the friction force acting on a moving
sphere in a viscid fluid.

In Lundgren (1969) the term (1.2) was approximated by a relaxation term
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where τ is the relaxation time and the ‘equilibrium’ probability density function f0 is
assumed to be an isotropic Gaussian
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characterized by the turbulent kinetic energy E.
From equation (1.1) with the approximations (1.4) and (1.5) equations for the second

moments may be derived (e.g. Kurbazkii 1988). These second-moments equations
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demonstrate that approximation (1.5) leads to the expression from Rotta (1951) for
the pressure–strain correlations caused by the wind velocity fluctuations. Also it can
be seen from these equations that there is no term modelling the pressure–strain
interaction caused by mean strain rates included in the approximation (1.5). It is
known that neglecting this interaction may cause unsatisfactory results in turbulent
shear flows. Even in the case of a simple one-dimensional homogeneous shear flow
equation (1.1) with the approximations (1.4) and (1.5) predicts that the variance of
both wind velocity components perpendicular to the mean wind velocity is equal (e.g.
Kurbazkii 1988) which is in contradiction to variances of the wind velocity measured
in plane homogeneous shear layers where the wind velocity variance in the direction
of the shear is smaller than the variance of the wind velocity perpendicular to the
direction of shear and to the direction of the mean wind velocity.

To overcome these difficulties we introduce an approximation of the term (1.2)
similar to Pope (1985) taking into account also the pressure–strain interaction caused
by the mean shear.

The modified Lundgren (1969) equation for the one-point probability density
function is then solved for the special case of a neutral atmospheric surface layer
characterized by a logarithmic wind profile.

Some properties of this solution are discussed in the framework of identifying the
deviations from a Gaussian probability density function.

2. Pressure–strain interaction
The term (1.2) may be split-up into a pressure–diffusion and a pressure–strain

interaction term
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and the pressure–strain interaction term is
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In the following we will restrict ourselves to the second part ∂f/∂t|P because the
pressure diffusion is of minor interest in many types of turbulent flows (Kurbazkii
1988).

Introducing the new coordinates r = x − x(2), u = v − V and u(2) = v(2)−V (2)

equation (2.1) is written as
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Assuming local homogeneity, the function f′ (1, 2) written in the new coordinates is
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independent of xi. Assuming further that the shear ∂Vm/∂xi is constant yields
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Inserting this expression into equation (2.2), after rearranging the terms and taking
into account the divergence condition for the two-point probability density function
given by Lundgren (1969)
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The first term in this equation is the only non-vanishing term in the absence of shear
and can be approximated (see Appendix A) by the relaxation term (1.5).

It can be shown that, unlike the other terms, the last one is not participating in
the redistribution of the second moments. Assuming only weak shear, by neglecting
the parts proportional to the square of shear, the last term is responsible for the
interaction between deviations of the probability density function from a Gaussian
and shear, because the term vanishes if the probability density function is a Gaussian.
The first and the second terms only vanish if the probability density function is an
isotropic Gaussian and give a reason for changing the probability density function
only if there is a deviation from the Gaussian. Compared to deviations from an
isotropic Gaussian we will assume that the deviations from a Gaussian are small so
that we can neglect completely the last term compared to the first and second ones.

The second term in equation (2.3) is responsible for the interaction between shear
and the deviation of the probability density function from an isotropic Gaussian. An
approximation of this term can be found in the following way. Using
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for the conditional mean value of the wind velocity, the second term on the right-hand
side of equation (2.3) (hereafter denoted ∂f/∂t|P2

) may be written as (Pope 1985)
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with
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Expression (2.5) was proposed by Pope (1985) for the second term in equation (2.3).
The coefficients amlik R

−1
ms in this ansatz are nonlinear in Rij if one is assuming the

expression for the tensor amlik given by Launder, Reece & Rodi (1975). Using once
again the assumption that the probability density function is a Gaussian results in
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The coefficients in this ansatz are now linear in Rij . At this point we should also state
that this term is not a diffusion term, because the matrix of coefficients is not positive
definite in all cases. Similar to the assumption made by Lundgren (1969) to get an
approximation of the friction term (1.4) we will presume that equation (2.4), which is
exact for a Gaussian, is also a good approximation for probability density functions
deviating only a little from Gaussian. Calculating the second-moment equation with
the term (2.7) shows that it leads to the redistribution of the second moments caused
by pressure–mean strain interaction. From equation (2.6) some symmetry relations
for the tensor amilj can be derived which lead in common with a linear ansatz in the
Reynolds stresses to the representation given by Launder et al. (1975)
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With this approximation (back transformed to vk) the final form of equation (1.1) for
the probability density function is

∂f (1)

∂t
+ vk

∂f (1)

∂xk
+

(
−1

ρ

∂p

∂xk
− gk + ν

∂2Vk

∂xj∂xj

)
∂f (1)

∂vk
− 1

γτ

∂

∂vk
[(vk − Vk) f (1)]

=
f0 (1)− f (1)

τ
+
∂f (1)

∂vi∂vm

∂Vk

∂xl
amlik . (2.10)

3. Calculation of the distribution function
One possible way of solving equation (2.10) is to presume a mean wind velocity

distribution V (x, t) and to look for an adequate distribution function. Transformation
of the velocity u := v − V (x, t) and transition to a new distribution function f(u +
V , x, t)→ f(u, x, t) in (2.10) yield

∂f

∂t
− ∂Vk

∂t

∂f

∂uk
+ (uk + Vk)

(
∂f

∂xk
− ∂Vl

∂xk

∂f

∂ul

)
+

(
−1

ρ

∂p

∂xk
− gk + ν

∂2Vk

∂xj∂xj

)
∂f

∂vk

− 1

γτ

∂

∂uk
(ukf) =

f0 − f
τ

+
∂2f

∂ui∂uj

∂Vk

∂xl
a
jl
ik. (3.1)



356 A. Wenzel and M. Baldauf

Solutions have to fulfil two consistence conditions: the normalization condition

1 =

∫
f(u, x, t)du (3.2)

and the condition of a vanishing averaged velocity deviation

0 =

∫
uk f(u, x, t)du. (3.3)

Now we consider a horizontally homogeneous and stationary turbulent shear flow.
Therefore we neglect the pressure gradient and gravity. Also the viscous term on
the left-hand side of (3.1) is neglected (Lundgren 1969). The continuity equation for
incompressible media yields V (z) = (U(z), 0, 0) and equation (3.1) simplifies to
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We make the further assumption that the probability density function f is independent
of height
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From this follows that all the coefficients have to be independent of z. The equality
τ∂U/∂z = const = G/γ means that the gradient of the averaged velocity is the
reciprocal of the relaxation time and yields the well known logarithmic profile if
τ ∼ z. If the tensor components a3i

1j are independent of z, all the Reynolds stresses
are independent of z too. All these additional assumptions result finally in the PDE
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with constant coefficients γ, G and a3j
1l (see Launder et al. 1975 or equations (2.8), (2.9)).

It can be changed to a PDE of first order by Fourier transformation
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The solution of this equation is (see appendix B for the steps to get this solution)
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with the symmetric matrices Nij(ξ) defined as
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where the matrix Mij(ξ) gives the influence of pressure–mean strain interaction on
the probability density function
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The matrix M contains the Reynolds stresses, which are calculated commonly with G
in the next paragraph.

The Fourier back transformation into the velocity domain yields finally the proba-
bility density function
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It can be seen that this probability density function consists of a ‘sum’ of Gaussians
having different second moments. This concept has already been used by other authors
(e.g. Baerentsen & Berkowicz 1984) to specify the probability density function for the
vertical wind velocity in the convective boundary layer. The difference is that they
used a discrete approximation of (3.8) by two Gaussians having different expectation
values.

4. Discussion
4.1. The moments of the distribution function

One advantage in considering the probability density function is that it contains all
the one-point correlation functions. All of these moments are symmetric in all of their
indices. So the second moments have 6 independent components, the third moments
have 10 and the fourth moments have 15. For our problem there are in principle two
distinct ways for calculating these moments.

The first way is to derive an equation for them from (3.4) or (3.5). For the second
moments e.g. this can be done by applying the operator ∂2/(∂km∂kn) on equation (3.5)
and then setting k = 0. The second way is to calculate the moments directly from the
probability density function (3.8). This is easily done for the characteristic function
(3.6) with aid of the moment theorem for the nth moment
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In particular one can find that with the zeroth moment
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ξγ−1 dξ = 1



358 A. Wenzel and M. Baldauf

R1,1/E − 2/3 R2,2/E − 2/3 R3,3/E − 2/3 R1,3/E

Kader & Yaglom (1990) 0.376 0.006 −0.382 −0.182
Panofsky & Dutton (1984) 0.486 −0.037 −0.448 −0.218
γ = 0.1; c2 = 0.6 0.437 0.023 −0.462 −0.227

Table 1. Comparison between measured and evaluated second moments

and the first moment
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the two consistency conditions are fulfilled.
The first way for the second moments results in
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Expressing E and amijl with equations (2.8), (2.9) by the Reynolds stresses Rij yields a
homogeneous system of linear equations of the form

Cmn,ij Rij = 0.

The solvability condition detC = 0 yields an equation of fourth order for G dependent
on the constants γ and c2. The only reasonable solution is

G =
(330)1/2

2
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(11γ − 15c2
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.

Solving the linear system gives for the Reynolds stress tensor
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E
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√

330

165 (γ + 2)
.

These moments can be compared with measurements to estimate the numerical val-
ues of γ and c2. It can be seen (table 1) that the choice γ = 0.1 and c2 = 0.6 gives
satisfactory results for second moments compared to the values for the moments
recommended by Panofsky & Dutton (1984) for the atmospheric surface layer. The
values proposed by Kader & Yaglom (1990) as characteristic for laboratory measure-
ments show smaller deviations from the isotropic tensor for the second moments;
nevertheless the overall agreement is quite good. Note that we used constants which
are different from the values c2 = 0.4 and c1 = 1.5 which gives γ = 2 (c1 − 1) = 1 pro-
posed by Launder et al. (1975) because we found better agreement for the atmospheric
surface layer.

For the higher moments the second way is more convenient. For the third moments
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ijkl
Rijkl

E

R
(Gauss)
ijkl

E

∣∣∣∣∣Rijkl − R
(Gauss)
ijkl

R
(Gauss)
ijkl

∣∣∣∣∣
1111 9.727 3.665 1.654
1113 −1.458 −0.754 0.935
1122 0.761 0.762 0.002
1133 0.438 0.330 0.328
1223 −0.156 −0.157 0.003
1333 −0.166 −0.497 0.185
2222 1.427 1.427 0.000
2233 0.141 0.141 0.002
3333 0.142 0.126 0.124

Table 2. Non-zero values of the fourth moments

it follows in the same manner as for the first moments that

Rlmn = 0.

This is a little astonishing on one hand, because F is not isotropic (for an isotropic,
symmetric tensor would it be trivial). On the other hand it is common to assume that
third moments are proportional to gradients of the second moments (e.g. Kurbazkii
1988) and in our case the second moments are constant so that we could expect from
this viewpoint vanishing third moments.

Consequently, the fourth moments should be considered. In particular, one should
compare them with a Gaussian distribution with the same second moments, whose
fourth moments can be expressed by

R
(Gauss)
iklm = RikRlm + RilRkm + RimRkl .

The fourth moments of f can be calculated as

Rklmn = γ

∫ 1

0

ξγ−1 (NklNmn +NkmNln +NknNlm) dξ.

This integral can be calculated analytically, but is very confusing expressed by γ and
c2. But one can see by this form that from vanishing of the matrix elements N12, N21,
N23, N32 it follows that the moments R1112, R1123, R1222, R1233, R2222, R2333 all are zero
(as for the Gaussian distribution). Therefore, from the 81 tensor components only 9
are non-trivially independent. Their numerical values for γ = 0.1 and c2 = 0.6 are
given in table 2. It can be seen, that remarkable deviations from a Gaussian can be
found only in the fu,w probability density function and especially in the fu probability
density function. We will discuss these features in the following.

4.2. Marginal probability density functions

Studying the one- or two-dimensional problem in the dispersion of air pollutants
knowledge of the fw and fu,w probability density function is necessary.

The characteristic function Fw for the fw function is equal to F (0, 0, k3) where F is
the characteristic function given by equation (3.6). Back transformation yields

fw = γ

∫ 1

0

ξγ−1 1

(2πN3,3(ξ))1/2
exp

(
− 1

2

w2

N3,3(ξ)

)
dξ, (4.1)

where N3,3 is the matrix component defined in (3.7). Comparing the probability
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Figure 1. Probability density function fw (solid line) compared to a Gaussian having the same
variance (dotted line).
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Figure 2. Probability density function fu (solid line) compared to a Gaussian having the same
variance (dotted line).

density function fw with a Gaussian having the same standard deviation for the
wind velocity component w, it can be seen (figure 1) that large wind velocity values
are more frequent. This behaviour is characteristic of probability density functions
having a positive excess, as found to be the case for the fw distribution given above.
In comparison to fw , the fu distribution

fu = γ

∫ 1

0

ξγ−1 1

(2πN1,1(ξ))1/2
exp

(
−1

2

u2

N1,1(ξ)

)
dξ

is characterized by a greater kurtosis (figure 2).
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Figure 3. (a) fu,w probability density function and (b) Gaussian having the same second moments.

Analoguous to the above, the two-dimensional characteristic function is Fu,w =
F (k1, 0, k3). Using Greek indices with (α = 1, 3) the back transformation yields

fu,w = γ

∫ 1

0

ξγ−1 1

2π(det(Nα,β(ξ))1/2
exp

(
− 1

2
uαN

−1
α,β (ξ)uβ

)
dξ. (4.2)

The stronger concentration of the wind velocity values around zero shown for the
fu and less significantly also for the fw probability density function compared to an
equivalent Gaussian is also visible in the fu,w distribution shown in figure 3. Another
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feature visible in figure 3 is the deviation from the ellipsoid shape of the isolines for
the probability density at large wind velocity values.

Deviations from the Gaussian discussed before are dependent on the choice of our
model parameters γ and c1 typical for the turbulent surface layer of the atmosphere.
Using the constants given by Launder et al. (1975) for laboratory turbulent shear
flows results in much smaller deviations from a Gaussian.

5. Conclusions
The equation of Lundgren (1969) for the determination of the one-point probability

density function was extended by an additional term to take into account also the
mean shear–pressure fluctuation interaction. The resulting equation for the probability
density yields the second moments equations used by Launder et al. (1975).

For the special case of a logarithmic boundary layer a solution of the resulting
equation for the probability density function and also the characteristic function could
be given.

By investigation of the fourth moments and the marginal probability density
functions fw , fu and fu,w resulting from this solution it could be shown that the
probability density function for the u-component is characterized by remarkable
kurtosis, whereas the probability density function for the w-component, which is only
produced by redistribution of the other components, has no remarkable kurtosis.

The authors are grateful to Professor Dr F. Fiedler, Dr N. Kalthoff and R. Cesari
for discussing and some helpful hints.

Appendix A. The relaxation term
In our article we concentrate on some additional terms in the Lundgren (1969)

equation for the one-point probability density function taking into account also the
pressure–mean strain interaction. A problem left open is the question of whether the
Boltzmann-type ansatz (1.5) for the first term in equation (2.3) proposed by Lundgren
(1969) is appropriate or not.

Describing turbulent flows on the level of the one-point probability density function
f (1) can only be done by assuming the two-point probability density function f (1, 2)
to be a functional of the one-point probability density function. In particular, the
first term in equation (2.3) can be rewritten as a functional of f(1), simply denoted as
P1[f (ui))]. Expanding this nonlinear functional in a Taylor series around the isotropic
Gaussian ‘equilibrium’ function (1.6) and taking into account only functionals linear
in f(1)− f0(1) results in

P1[f (ui)] = P1[f0 (ui)] +

∫
δP1[f (ui)]

δf
(
u′i
) ∣∣∣∣∣

f0

(
f
(
u′i
)
− f0

(
u′i
))

du′. (A 1)

Using this approximation in equation (2.10) and assuming the isotropic Gaussian to
be a solution of this equation under shear-free isotropic conditions the first term
must be zero. The Boltzmann term proposed by Lundgren (1969) for the first term
in (2.3) can be found from the approximation (A 1) as the first term in the Kramers–
Moyal expansion of this expression. The functional P1 is not known. From this our
considerations give us only some formal arguments to approximate the first term in
expression (2.3) by a Boltzmann term. Nevertheless it can be seen that this term is an
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approximation for the case of ‘small’ deviations of the probability density function
from an isotropic Gaussian.

Appendix B. Solution of the Fourier transformed PDE
The solution of the PDE (3.5) is done with the well known method of characteristics.

The starting point is the characteristic system

dk1

k1

=
dk2

k2

=
dk3

k3 + Gk1

=
dF

γF0 − (Ga3j
1l kjkl + γ)F

.

This ODE system is solved with k1 as independent variable. The first three terms
constitute two independent ODEs and consequently can be solved directly:

k2 = C2k1, (B 1)

k3 = C3k1 + Gk1 ln k1. (B 2)

To avoid troublesome case differentiations use will be made of the symmetry F(−k) =
F(k), therefore only k1 > 0 is considered. The singularity in the characteristic system
then is reached only from the right-hand side.

Insert k2 and k3 to solve the third equation of the characteristic system for F(k1),

dF

dk1

+

(
γ

k1

+ a(k1)

)
F =

γ

k1

F0(k1, C2k1, C3k1 + Gk1 log k1)

with

a(k1, C2, C3) = Ga
3j
1l

kjkl

k1

= Gk1

[
a31

11 + (a32
11 + a31

12)C2 + (a33
11 + a31

13)(C3 + G ln k1) + a32
12C

2
2

+(a33
12 + a32

13)C2(C3 + G ln k1) + a33
13(C3 + G ln k1)(C3 + G ln k1)

]
. (B 3)

As usual we seek first the homogeneous solution and then with the method of
variation of constants a particular one

F = Fh + Fi (B 4)

with

Fh = C1 exp

(
−
∫ k1

kh

( γ
x

+ a(x, C2, C3)
)

dx

)
= C1

(
kh

k1

)γ
exp

(
−
∫ k1

kh

a(x, C2, C3)dx

)
;

(B 5)

k1 → ∞ yields the limit Fh → 0, because in a(k1, C2, C3) the term ∼ a33
13G

3k1(log |k1|)2

dominates with a33
13 =

(
− 4

11
+ 5

11
c2

)
R13 > 0 for c2 <

4
5

(equations (2.8), (2.9)). This
statement is independent of kh, so we set kh = 1 for the lower integration limit.

The particular solution reads

Fi(k1, C2, C3) = γ

∫ k1

ku

(
x

k1

)γ
exp

(∫ x

k1

a(x′, C2, C3)dx
′
)
F0(x, C2x, C3x+ Gx log x)

x
dx.

(B 6)

Choosing ku = 0 one can derive the limit limk1→0 Fi(k1, C2, C3)→ 1 for all C2, C3 with
l’Hospital’s rule, by extracting a factor 1/kγ1 from the integral.
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With equations (B 1), (B 2) and (B 4) with (B 5) and (B 6) solved explicitly in the
integration constants, one can represent the general solution of the PDE (3.5) as
Ψ (C1, C2, C3) = 0 or in explicit form

C1 = g (C2, C3)

and therefore

F = g(C2, C3) exp

(
−
∫ k1

kh

( γ
x

+ a(x, C2, C3)
)

dx

)
+ Fi

(
k1,

k2

k1

,
k3

k1

− G log k1

)
. (B 7)

Now we show that the function g must vanish identically. For this we consider a path
with k1, k2, k3 → 0 in the special manner that C2 = k2/k1 and C3 = k3/k1 + G ln k1

can take any ambiguous but constant value. We have seen already that in this case
the normalization condition F → 1 is fulfilled by Fi alone. Because the exponential
function in the first term of equation (B 7) has non-zero values, it follows that
g(C2, C3) = 0 for any C2, C3.

The solution of the PDE is therefore (B 6), where C2, C3 are replaced by the ki. By
introducing ξ := x/k1 one can simplify

F(k) = γ

∫ 1

0

ξγ−1 exp

(∫ ξk1

k1

a(x′, C2, C3)dx
′
)

× exp

(
−
[

2
3
E
]

2
ξ2
(
k2

1 + k2
2 + (k3 + k1G log ξ)2

))
dξ.

Although this transformation is allowed only for k1 6= 0, this term yields the correct
continuation for k1 = 0. The main advantage of this transformation is that all the
terms in the exponent can be represented as a quadratic form in k:∫ ξk1

k1

a

(
x′,
k2

k1

,
k3

k1

− G log k1

)
dx′ = Mijkikj .

This calculation is cumbersome and was left to the computer algebra program ’Maple’.
The result gives equation (3.6).
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